Lista de exercícios do ensino médio para impressão
(ITA - 2004) Sejam os pontos $\phantom{X} A: \; (2;\, 0)\, $, $\;B:\;(4;\, 0)\;$ e $\;P:\;(3;\, 5 + 2\sqrt{2})\,$.
a)
Determine a equação da cirunferência $\;C\;$, cujo centro está situado no primeiro quadrante, passa pelos pontos $\;A\;$ e $\;B\;$ e é tangente ao eixo $\;y\;$.
b)
Determine as equações das retas tangentes à circunferência $\;C\;$ que passam pelo ponto $\;P\;$.

 



resposta:
Resolução:
circunferência no plano cartesiano
a)
Seja $\; O \; $ o centro da circunferência $\;C\;$ no primeiro quadrante. Na figura, $\;C\;$ passa pelos pontos $\;A\;$ e $\;B\;$, tangenciando o eixo $\;y\;$.
$\;O\;$ possui coordenadas (3,m) e $\;\overline{OA}\;$ é raio da circunferência, portanto $\;\overline{OA}\;$ mede 3.
$\;(\overline{OA})^2 = (3 - 2)^2 + (m - 0)^2 \; \Rightarrow \;$ $\; \sqrt{1 + m^2} = 3 \;\Rightarrow \;$ $\; m^2 = 8 \; \Rightarrow \; m = 2\sqrt{2}$.
O ponto $\;\; O \;\;$, centro da circunferência $\;C\;$, tem coordenadas $\;(3, 2\sqrt{2})\;$, e
a equação da circunferência é $\;\boxed{\;(x - 3)^2 + (y - 2\sqrt{2})^2 = 9\;} $
b)
A equação do feixe de retas não verticais concorrentes em $\;P\;$, e coeficiente angular $\;a\;$ : $\; y - (5 + 2\sqrt{2})\;=\;$ $\;a(x - 3) \; \Rightarrow \; ax - y + 5 + 2 \sqrt{2} - 3a = 0\;$. A reta vertical que contém $\;P(3,\;5 + 2\sqrt{2})\;$ corta a circunferência $\;C\;$ em 2 pontos. A distância entre as tangentes e o centro $\;O (3;\; 2\sqrt{2})\;$ é igual a 3, ou seja:
$\;\dfrac{|3a\,-\,2\sqrt{2}\,+\,5\,+\,2\sqrt{2}\,-\,3a|}{\sqrt{a^2\,+\,1}}\,=\,3 \;\Rightarrow$ $\; \dfrac{5}{a^2\,+\,1}\,=\,3 \;\Rightarrow $ $\; a\;=\;\dfrac{4}{3}$ ou $\;a = -\, \dfrac{4}{3}$.
As equações das tangentes são:
$\;\boxed{\; y\,-\,(5\,+\,2\sqrt{2})\,=\,\dfrac{4}{3}(x\,-\,3)}\;$ e $\;\boxed{\; y\,-\,(5\,+\,2\sqrt{2})\,=\, -\, \dfrac{4}{3}(x - 3)}\;$

×
Determine a equação da circunferência cujo centro coincide com a origem do sistema cartesiano e cujo raio mede 3 unidades.

 



resposta:
circunferência de raio 3 e centro 0-0 no plano cartesiano
Resolução:
A equação da circunferência de centro $\;C\,(a\,,\,b)\;$ e raio $\,R\,$ é:
$\,(x\,-\,a)^2\,+\,(y\,-\,b)^2\,=\,R^2\;$.
Como $\;C\,(0\,,\,0)\;$ e $\;R\,=\,3\;$, temos:
$\,(x\,-\,0)^2\,+\,(y\,-\,0)^2\,=\,3^2\;\Rightarrow$ $\; \;x^2\,+\,y^2\,-\,9\,=\,0\;$

$\phantom{X}\boxed{\;x^2\,+\,y^2\,-\,9\,=\,0\;} \phantom{X}$


×
Determinar a equação da circunferência de centro C (2 , -3) e raio R = 5 unidades.

 



resposta:
circunferência de raio três e centro dois e menos três

Resolução:

A equação da circunferência de centro C (a , b) e raio R é:
$\;(x\,-\,a)^2\,+\,(y\,-\,b)^2\,=\,R^2\; \;$.
Como C (2 , -3) e R = 5 , temos então:
$(x\,-\,2)^2\,+\,[y\,-\,(-3)]^2\,=\,(5)^2\;\Rightarrow$
$\Rightarrow\;(x\,-\,2)^2\,+\,(y\,+\,3)^1\,=\,5^2\;\;\Rightarrow$
$\Rightarrow \phantom{X}\;x^2\,+\,y^2\,-\,4x\,+\,6y\,-\,12\,=\,0\;$

$\; \phantom{X}\boxed{\;x^2\,+\,y^2\,-\,4x\,+\,6y\,-\,12\,=\,0\;}$


×
Determinar a equação geral (ou normal) da circunferência de centro C (-1 , -3) e raio r = 4 .

 



resposta: Resolução:
$\,(x\,-\,a)^2\,+\,(y\,-\,b)^2\,=\,r^2\;\Rightarrow [x\,-\,(-1)]^2\,+\,[y\,-\,(-3)]^2\,=\,4^2\;\Rightarrow \;$
$\,\Rightarrow (x\,+\,1)^2\,+\,(y\,+\,3)^2\,=\,16\,$.
Desenvolvendo os quadrados das somas:
$\,x^2\,+\,2x\,+\,1\,+\,y^2\,+\,6y\,+\,9\,=\,16\;\Rightarrow$
$\,\Rightarrow \boxed{\;x^2\,+\,y^2\,+\,2x\,+\,6y\,-\,6\,=\,0\;}\,$
Resposta: $\;\boxed{\;x^2\,+\,y^2\,+\,2x\,+\,6y\,-\,6\,=\,0\;}\,$

×
Determinar a equação da circunferência que tem um diâmetro determinado pelos pontos A (5 , -1) e B (-3 , 7) .

 



resposta:
Resolução:
O segmento $\,\overline{AB}\,$ é um diâmetro da circunferência, então o centro da circunferência é o ponto médio de $\,\overline{AB}\,$:
$\left\{\begin{array}{rcr} A(5\, ,\,-1) \phantom{X}& \\ B(-3\,,\,7) \phantom{X}& \\ \end{array} \right. \;$ $\Rightarrow \;C\,\left( \frac{5 - 3}{2}\,;\,\frac{-1+7}{2} \right)\;\Rightarrow\;C\,(1\,;\,3)$
O raio da circunferência é obtido através da distância AC ou da distância BC.
$\,r\,=\,|AC|\,=$ $\,{\large\,\sqrt{(5\,-\,1)^2\,+\,(-1\,-\,3)^2}}\,=\,\sqrt{32}\,$
A equação da circunferência de raio $\,\sqrt{32}\,$ e centro $\,C\,(1 ; 3)\,$ é:
$\,(x\,-\,1)^2\,+\,(y\,-\,3)^2\,=\,32\;\Rightarrow$ $\;x^2\,+\,y^2\,-\,2x\,-\,6y\,-\,22\,=\,0\,$
Resposta:
$\,\boxed{\;x^2\,+\,y^2\,-\,2x\,-\,6y\,-\,22\,=\,0\;}\,$

×
Determinar a equação da circunferência que passa pela origem do sistema cartesiano e cujo centro é o ponto de coordenadas (4 , -3) .

 



resposta:
circunferência no plano cartesiano

Resolução:


O raio da circunferência é a distância do centro até a origem:
$R\,=\,d_{CO}\,=$ $\,{\large\,\sqrt{(x_C\,-\,x_O)^2\,+\,(y_C\,-\,y_O)^2}}$
$R\,=\,{\large\,\sqrt{(4\,-\,0)^2\,+\,(-3\,-\,0)^2}}\;\Rightarrow\;$
$R\,=\,\sqrt{16\,+\,9}\;\Rightarrow\;R\,=\,5$
A equação da circunferência de centro $\;C\,(a\,,\,b)\;$ e raio $\,R\,$ é:
$(x\,-\,a)^2\,+\,(y\,-\,b)^2\,=\,R^2\,$
Sabemos que o centro é $\;C\,(4\,,\,-3)\;$ e raio $\,R\,=\,5\,$. Temos então:
$(x\,-\,4)^2\,+\,[y\,-\,(-3)]^2\,=\,(5)^2\;\Rightarrow$ $\;(x\,-\,4)^2\,+\,(y\,+\,3)^2\,=\,5^2\;\Rightarrow$

$\;\boxed{\;x^2\,+\,y^2\,-\,8x\,+\,6y\,=\,0\;}$


×
Determinar as coordenadas do centro e o raio de cada uma das circunferências abaixo:
a)
$\;(x\,-\,5)^2\,+\,(y\,-\,7)^2\,=\,64\,$
b)
$\;x^2\,+\,y^2\,-\,12x\,+\,16y\,-\,1\,=\,0\,$

 



resposta: a)
Resolução:
$\;(x\,-\,5)^2\,+\,(y\,-\,7)^2\,=\,64\,$
A equação reduzida da circunferência de centro C(a,b) e raio R:
$(x\,-\,a)^2\,+\,(y\,-\,b)^2\,=\,R^2\;$, e temos que
$(x\,-\,5)^2\,+\,(y\,-\,7)^2\,=\,64\;\Rightarrow$ $\boxed{\;C\,(5\,,\,7)\;}$ e
$R^2\,=\,64\;\Rightarrow\;\boxed{\;R\,=\,8\;}$
$\boxed{\;C\,(5\,,\,7)\;\text{ e }\;R\,=\,8\;}$
b)
Resolução:

$\;x^2\,+\,y^2\,-\,12x\,+\,16y\,-\,1\,=\,0\,$
A equação geral da circunferência de centro (a,b) e raio R:
$x^2\,+\,y^2\,+\,mx\,+\,ny\,+\,p\,=\,0\,$. Então
$\left.\begin{array}{rcr}\,a\,=\,-{\large \frac{m}{2}}\;\Rightarrow\;a\,=\,-{\large \frac{(-12)}{2}}\;\Rightarrow\;a\,=\,6 \;& \\ \,b\,=\,-{\large \frac{n}{2}}\;\Rightarrow\;b\,=\,-{\large \frac{(+16)}{2}}\;\Rightarrow\;b\,=\,-8 & \\ \end{array} \right\}$ $\;\Rightarrow \; \boxed{\;C\,(6\,,\,-8) \;}$
$p\,=\,a^2\,+\,b^2\,-\,R^2\;\Rightarrow $ $\;-1\,=\,6^2\,+\,(-8)^2\,-\,R^2\;\Rightarrow$ $\;R^2\,=\,101\;\Rightarrow\;\boxed{\;R\,=\,\sqrt{101}\;}$
$\;\boxed{\;C\,(6\,,\,-8)\;\text{ e }\;R\,=\,\sqrt{101}\;}$
×
Determinar a equação da circunferência que passa pelo ponto A (-1 , 6) e tangencia o eixo dos "y" no ponto B (0 , 3) .

 



resposta:
Resolução:
Sendo o centro da circunferência
o ponto C (x , 3) conforme a figura:
circunferência tangente ao ponto zero três no plano cartesiano
Sendo $\;\overline{CA}\;$ e $\;\overline{CB}\;$ raios da mesma circunferência,
são segmentos de medidas iguais:
$ \overline{CA}\,=\overline{CB}\,$
$\;\sqrt{ (x\,+\,1)^{\large 2}\,+\,(3\,-\,6)^{\large 2}} \,= $ $\,\sqrt{ (x\,-\,0)^{\large 2}\,+\,(3\,-\,3)^{\large 2} } $
Elevando ao quadrado, simplificando, temos:
$(x\,+\,1)^{\large 2}\,+\,9\,=\,x^{\large 2}\;\Rightarrow\;$ $x\,=\,-5\,$
Então o centro é $\,C\,(-5\,,\,3)\,$ e o raio é $\,\overline{BC}\,=\,5$
e a equação da circunferência:
$\,(x\,+\,5)^2\,+\,(y\,-\,3)^2\,=\,5^2\;\Rightarrow\;$ $\;x^2\,+\,y^2\,+\,10x\,-\,6y\,+\,9\,=\,0\,$
Resposta:
$\,\boxed{\;x^2\,+\,y^2\,+\,10x\,-\,6y\,+\,9\,=\,0\;}\,$
×
(ITA - 1990) Seja $\;C\;$ o centro da circunferência $\;x^2\,+\,y^2\,-\,6\sqrt{2}y\,=\,0\;$. Considere $\,A\,$ e $\,B\,$ os pontos de intersecção desta circunferência com a reta $\,y\,=\,\sqrt{2}x\,$. Nestas condições o perímetro do triângulo de vértices $\,A\,$, $\,B\,$ e $\,C\,$ é:
a)
$\,6\sqrt{2}\,+\,\sqrt{3}\,$
b)
$\,4\sqrt{3}\,+\,\sqrt{2}\,$
c)
$\,\sqrt{2}\,+\,\sqrt{3}\,$
d)
$\,5\sqrt{3}\,+\,\sqrt{2}\,$
e)
n.d.a.

 



resposta: (E)
×
(FUVEST - 2015) A equação $\phantom{X}x^2\,+\,2x\,+\,y^2\,+\,my\,=\,n\phantom{X}$, em que $\,m\,$ e $\,n\,$ são constantes, representa uma circunferência no plano cartesiano. Sabe-se que a reta $\phantom{X}y\,=\,-x\,+\,1\phantom{X}$ contém o centro da circunferência e a intersecta no ponto $\,(-3,\,4)\,$. Os valores de $\,m\,$ e $\,n\,$ são, respectivamente

a)
-4 e 3
b)
4 e 5
c)
-4 e 2
d)
-2 e 4
e)
2 e 3

 



resposta: alternativa A
×
Veja exercÍcio sobre:
geometria analítica
equação da tangente
equação da circunferência